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SUMMARY   Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel 
betacoronavirus that is associated with a high mortality rate (~36%) and is endemic in the 
Middle East. Since 2012, there have been 2100 laboratory confirmed cases and 730 deaths 
associated with MERS-CoV in 27 countries. Clinical manifestations of the virus range from 
asymptomatic to acute respiratory distress syndrome (ARDS), septic shock, and renal failure 
resulting in death. Bats are the natural reservoirs of MERS-CoV and can travel over long 
distances to transmit the virus to different intermediate hosts and humans. This, combined 
with the MERS-CoV spike (S) protein’s ability to undergo mutations that increase its 
transmission efficiency, gives the virus a pandemic potential. Currently there is a lack of 
knowledge on how viral and host factors contribute to the transmission and pathogenesis of 
MERS-CoV in humans. This article explores the different viral and host factors associated 
with MERS-CoV transmission and pathogenesis, and how this knowledge can aid in the 
development of therapeutics. MERS-CoV transmission is facilitated by interaction between 
the viral receptor binding domain of the S protein and the host receptor dipeptidyl peptidase 
4 (DPP4). MERS-CoV can utilize multiple host proteases such as furin, transmembrane serine 
proteinase 2 (TMPRSS2), trypsin, and cathepsin to cleave the S protein, which facilitates 
membrane fusion. MERS-CoV has been shown to primarily infect cells in the lower 
respiratory tract of humans, but it can also infect immune and kidney cells. An overactive 
inflammatory response, induction of apoptosis, and cytokine dysregulation are vital factors 
that contribute to the high pathogenicity associated with MERS-CoV infection. Future 
treatment options for MERS-CoV include inhibition of virus entry, fusion, polyprotein 
cleavage, and replication by targeting both viral and host factors. 
 

INTRODUCTION 
iddle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic 
human coronavirus, which was first identified in the Middle East in 2012 [1, 3]. It 

belongs to the Coronaviridae family and the C lineage within the Betacoronavirus genus. 
M 
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Like other coronaviruses, MERS-CoV is an enveloped virus with a positive-sense single-
stranded RNA genome. Its genome consists of over 30,000 nucleotides and encodes for non-
structural proteins, accessory proteins, and structural proteins including the spike (S), 
nucleocapsid (N), membrane (M), and envelope (E) proteins [1, 4]. Since 2012, there have 
been 2100 laboratory confirmed cases and 730 deaths associated with MERS-CoV in 27 
countries, with an alarming fatality rate of ~36% [2]. Clinical manifestations of the virus 
range from asymptomatic to acute respiratory distress syndrome (ARDS), septic shock, and 
renal failure resulting in death [5, 6]. The severity of disease and fatality rates are much higher 
in patients with existing co-morbidities such as diabetes and hypertension [5]. The natural 
reservoir for MERS-CoV is thought to be bats in the Vespertilionidae family [1]. This 
observation is supported by studies demonstrating that bat coronaviruses phylogenetically 
related to MERS-CoV (HKU4 and HKU25) were able to utilize the MERS-CoV receptor, 
human dipeptidyl peptidase 4 (hDPP4), for cell entry [7, 8]. The virus is proposed to have 
been transmitted from bats to dromedary camels, which acted as an intermediate host and 
allowed for the diversification of MERS-CoV through multiple recombination events and 
mutations in the S protein, which is involved in viral attachment and entry [9].  

Unlike humans, the presence of the virus in bats and camels does not lead to overt disease 
signs [12]. Studies have shown that alpacas, non-human primates, goats, cows, sheep, and 
horses could act as potential intermediate hosts for MERS-CoV as well [1, 3]. MERS-CoV is 
primarily transmitted from camels to humans through respiratory secretions, saliva, urine, and 
raw camel meat and milk consumption [9, 10]. In addition, limited human-to-human 
transmission through respiratory secretions, direct close contact, and fomites has been 
observed mostly in hospital settings [11]. Further mutations in the receptor binding domain 
of the S protein could increase the transmissibility of MERS-CoV among humans [1]. The 
ability of infected bats to fly long distances and the high mutations rates associated with the 
MERS-CoV S protein make it likely to cause the next global outbreak [4]. Thus, it is essential 
to understand the viral and host factors that contribute to the transmission and pathogenesis 
of MERS-CoV in humans. A better understanding of these viral and host factors will allow 
for the development of potential direct-acting antivirals (DAAs) and indirect-acting antivirals 
(IAAs) to treat patients. 

 
RESEARCH QUESTIONS 

Bats are the natural reservoirs of MERS-CoV and can travel over long distances to 
transmit the virus to different intermediate hosts and humans. Because of urbanization and 
deforestation, bats are encroaching into human territory more frequently [13]. This, combined 
with the ability of MERS-CoV S protein to undergo mutations that increase its transmission 
efficiency, give the virus a pandemic potential. Currently, there is a lack of knowledge on 
how viral and host factors contribute to the transmission and pathogenesis of MERS-CoV in 
humans. MERS-CoV infection is also associated with an extremely high fatality rate of ~36%, 
and presently there are no treatments available to treat infected patients [1, 2]. Determining 
the exact molecular mechanisms by which viral and host factors contribute to MERS-CoV 
transmission and pathogenesis may help prevent a future global outbreak. Furthermore, it will 
open new avenues on how to develop DAAs and IAAs to treat MERS-CoV. Three questions 
need to be addressed to better understand how MERS-CoV infection leads to disease and 
mortality in humans. First, the viral and host factors associated with MERS-CoV transmission 
need to be elucidated. Then, it is crucial to understand the role that viral and host factors play 
in the pathogenesis related to MERS-CoV. Finally, it is important to investigate the potential 
DAAs and IAAs that can be used to target viral and host factors in MERS-CoV infected 
patients. By answering these three questions, this article aims to address the gap in knowledge 
that currently exists in our understanding of MERS-CoV transmission, pathogenesis, and 
potential treatment options. 

 

PROJECT NARRATIVE 
Viral and host factors associated with MERS-CoV transmission 

A fundamental requirement for the successful transmission of viruses is their ability to 
utilize both viral and host proteins to facilitate attachment, entry, and replication in the host 
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cell [14]. For MERS-CoV, effective transmission involves the critical interaction between the 
viral S protein and host cell DPP4 receptor [15, 16]. The S protein consists of the S1 subunit, 
which contains the receptor binding domain (RBD) involved in binding DPP4, and the S2 
subunit, which carries the fusion peptide involved in membrane fusion [15, 16].  

Although DPP4 is relatively conserved between mammalian species, differential 
glycosylation patterns and differences in amino acid residues involved in binding the S 
protein act as barriers to MERS-CoV transmission [3, 17, 18]. The ability of MERS-CoV to 
be transmitted through droplets makes it highly contagious, but, surprisingly, there is limited 
human-to-human transmission. This is because DPP4 is predominantly expressed in the lower 
respiratory tract, but not in the upper respiratory tract of humans [10]. DPP4 is located in the 
upper respiratory tract of dromedary camels, thus allowing the efficient transmission of 
MERS-CoV to camels via droplet secretions [10]. Like the avian influenza A/H5N1 virus, 
MERS-CoV may be a few mutations away from being able to utilize receptors in the upper 
respiratory tract of humans, which would result in increased transmission efficiency and also 
increase the risk of a future global pandemic [19]. During the 2015 South Korea MERS-CoV 
outbreak, a single point mutation in the S1 RBD reduced the affinity of the virus to human 
DPP4 but increased its transmissibility [20]. The increased transmissibility could be 
explained by polymorphisms in DPP4, increased MERS-CoV replication in the submucosal 
glands of the upper respiratory tract, and better evasion of the host immune system [20].  

The proteolytic cleavage of the viral envelope glycoproteins permits membrane fusion, 
and it is an essential step for efficient viral transmission [21]. Unlike other human 
coronaviruses, the S protein in MERS-CoV is cleaved during its biosynthesis [21]. A two-
step activation mechanism has been proposed for MERS-CoV (Fig. 1) [21, 22]. The S protein 
is first cleaved between S1 and S2 subunits by furin in the endoplasmic reticulum-Golgi 
compartments of the producer cell. This early cleavage is required for infection of human 
lung cells but is not necessary to infect other cell types [21]. This cleavage allows the RBD 
of S1 to attach to the target cell. Once attached to the target cell, a second cleavage occurs 
upstream of the S2 subunit at the host cell surface [21, 22]. This cleavage by host cell 
transmembrane serine proteinase 2 (TMPRSS2), furin or trypsin exposes the fusion peptide, 
which facilitates membrane fusion and the release of the viral genome into the cytoplasm. 
Without the first cleavage event, the uncleaved MERS-CoV is endocytosed into the target 

FIG. 1 Model for MERS-CoV S protein cleavage and entry: Diagram showing how pre-cleaved and uncleaved 
MERS-CoV virions from a producer cell enter a new target cell. In some producer cells, the MERS-CoV S protein is 
cleaved by furin and this allows early entry into the target cell through a second cleavage by furin, trypsin, or TMPRSS2 
at the cell surface. In other producer cells, MERS-CoV S protein remains uncleaved and this results in late entry into the 
target cell via endosomes, where the S protein is cleaved by cathepsin L and/or B [21, 22]. 
  



Rahman JEMI-PEARLS  

August 2018    Volume 3            Undergraduate Review Article    https://jemi.microbiology.ubc.ca/  26 

cell and cleaved by Cathepsin L and/or B in endosomes [21]. Uncleaved MERS-CoV is less 
infectious to human airway epithelial cells and can only infect cells containing late-acting 
endosomal proteases.  

 
Viral and host factors associated with MERS-CoV pathogenesis 

The ubiquitous expression of DPP4 in different cell types and the ability of MERS-CoV 
to use multiple host cell proteases to cleave the S protein helps explain the broad cell tropism 
and increased pathogenicity associated with the virus (Fig. 2) [22, 23]. The natural ligand for 
DPP4 is adenosine deaminase (ADA), and their interaction plays a significant role in the 
proliferation, and activation of T cells [24]. MERS-CoV hijacks the host DPP4 receptor, thus 
preventing ADA binding and limiting T cell activation. The lower respiratory tract is the 
primary site for MERS-CoV infection in humans [10]. MERS-CoV has been shown to 
robustly infect and replicate in non-ciliated bronchial epithelial cells, bronchiolar epithelial 
cells, alveolar epithelial cells, and endothelial cells of pulmonary vessels [25]. Upon 
infection, these cells undergo apoptosis through extensive caspase-3 activation [25]. This 
increased apoptosis possibly contributes to pneumonia and acute lung injury observed in 
MERS-CoV infected patients. Papain-like protease (PLpro), M protein, and accessory 
proteins 4a, 4b, and 5 are used by MERS-CoV to evade the host immune system through 
interferon suppression, deubiquitinating and deISGylating activities [26].  

Infection of alveolar macrophages and dendritic cells by MERS-CoV leads to the release 
of proinflammatory cytokines and chemokines [26]. The persistent expression of 
proinflammatory cytokines recruit and activate neutrophils, which damage infected tissues 
[27]. One study showed that although immunosuppressed macaques support higher levels of 
MERS-CoV replication in respiratory tissues, the pathology in their lungs was significantly 
lower compared to non-immunosuppressed macaques [28]. This demonstrates that MERS-
CoV itself causes little damage to the infected cells and pathogenesis can be attributed to an 
overactive inflammatory response.  

FIG. 2 Viral and host factors contributing to MERS-CoV pathogenesis: This figure is a summary of the major viral 
and host factors associated with MERS-CoV pathogenesis in humans.  
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T cells play a significant role in controlling MERS-CoV, but the virus is capable of 
infecting and inducing T cell apoptosis through the intrinsic and extrinsic apoptotic pathways 
[27]. Furthermore, infection of T cells results in the dysregulation of cytokine production, 
which can lead to a cytokine storm and septic shock in patients [27]. MERS-CoV 
downregulates antigen-presentation pathways, which results in decreased T-cell activation to 
fight MERS-CoV infection [27]. The ability of MERS-CoV to infect pulmonary endothelial 
cells, dendritic cells, and T cells allows the virus to disseminate beyond the respiratory tract 
and infect other organs, such as the kidneys [25, 27]. MERS-CoV has been shown to induce 
apoptosis in lung and kidney cells through the upregulation of proapoptotic proteins, Smad7 
and fibroblast growth factor (FGF2) [29]. The extensive apoptosis in the lung and kidney 
cells contribute to the ARDS, and renal failure observed in infected patients. 

 
Potential DAAs and IAAs for the treatment of MERS-CoV 

Given the current knowledge we possess about viral and host factors contributing to 
MERS-CoV transmission and pathogenesis, different DAAs and IAAs could potentially be 
developed for treatment purposes (Fig. 3).  

DPP4 inhibitors which target the binding interface between DPP4 and the RBD of S1 can 
be effective at preventing MERS-CoV attachment and entry [30]. ADA, the natural ligand 
for DPP4, has been shown to act as a natural antagonist for MERS-CoV binding [31]. Human 
monoclonal antibodies, such as m336, have been shown to effectively neutralize the MERS-
CoV S protein [32]. Furthermore, soluble DPP4 can potentially be used to prevent the S1 
RBD from binding to cell-surface DPP4.  

The viral fusion process can be blocked by either targeting the host cell proteases or the 
S2 domain of MERS-CoV. A peptide, called HR2P, has been successful in inhibiting the 
fusion process during MERS-CoV infection [33]. Inhibitors of host cell proteases such as 
furin, TMPRSS2, and cathepsins can be used not only to treat MERS-CoV infection, but also 
other enveloped viruses. Potent synthetic inhibitors of furin have been developed, which 
could potentially be used for the treatment of infectious enveloped viruses, including MERS-
CoV [34]. Furthermore, the use of furin-directed human microRNA, miR-24, can be utilized 
to downregulate furin expression [35]. A robust decrease in both furin activity and mRNA 
levels were observed using miR24 mimics. This decrease in furin activity led to a significant 
reduction in influenza H5N1 virions and completely blocked viral spread. Given the 
significance of furin-mediated cleavage of the MERS-CoV S protein, miR24 mimics may 
play a pivotal role in preventing the fusion process. A potent TMPRSS2 inhibitor also 

FIG. 3 Potential DAA and IAA targets for the treatment of MERS-CoV: This figure is a summary of the potential 
DAA and IAA targets for the treatment of MERS-CoV. The four categories for therapeutics include entry, fusion, 
protease, and replicase inhibitors directed towards both the virus and the host [30].  
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demonstrated efficient blockage of the influenza fusion process in human airway epithelial 
cells [36]. Teicoplanin, a glycopeptide antibiotic, has been shown to potently block the entry 
of MERS-CoV, severe acute respiratory syndrome coronavirus (SARS-CoV) and, Ebola by 
specifically inhibiting cathepsin L activity [37].  

3C-like protease (3CLpro) and PLpro are viral proteases which play a critical role in 
MERS-CoV replication by cleaving the viral polypeptide following translation. A covalent 
low molecular inhibitor was shown to inhibit the activity of PLpro for both MERS-CoV and 
SARS-CoV [38]. In addition, a wide-spectrum anti-CoV inhibitor, N3, was shown to inhibit 
the proteolytic activity of MERS-CoV 3CLpro [39]. Viral helicase and RNA-dependent RNA 
polymerase could potentially be targeted to block MERS-CoV replication, and this approach 
would also be useful in treating other human CoV infections [30]. One study suggested the 
use of antisense oligonucleotides targeting Smad7 and small molecule inhibitors of FGF2 
receptor tyrosine kinase to suppress MERS-CoV induced apoptosis and replication [29].  

Accurately diagnosing MERS-CoV and other viral infections is a critical step prior to 
prescribing treatment to patients. A new test, called ViroCap, has been designed to diagnose 
viruses from 34 different families [40]. ViroCap can test for all the viruses at the same time, 
check for variant strains of the same virus, and is almost as sensitive as the polymerase chain 
reaction (PCR). Future studies should attempt to validate the accuracy of Virocap in 
diagnosing infectious viral agents in larger trials (Fig. 4).   

 
SUMMARY AND FUTURE DIRECTIONS 

MERS-CoV is an emerging betacoronavirus that is associated with a high mortality rate 
and can be transmitted via respiratory secretions. Therefore, it is critical to understand how 
viral and host factors interact with each other to allow the virus to efficiently infect and 

FIG. 4 Future directions for MERS-CoV research: This figure depicts the future directions for MERS-CoV research. 
It is important to investigate the biochemical pathways hijacked by MERS-CoV, DPP4 polymorphisms and MERS-CoV 
disease, therapeutic potential of sDPP4 in MERS-CoV patients, and the side effects associated with proposed DAAs and 
IAAs. The development of a universal genomics diagnostic test and looking into emerging betacoronaviruses in bats are 
vital in preventing future outbreaks.  
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replicate in humans. This article explores the different viral and host factors associated with 
MERS-CoV transmission and pathogenesis, and how this knowledge can aid in the 
development of therapeutics. MERS-CoV transmission is facilitated by the interaction 
between viral S1 RBD and host receptor DPP4 [15, 16]. Furthermore, MERS-CoV can utilize 
multiple host proteases to cleave the S protein, which facilitates membrane fusion. MERS-
CoV has been shown to primarily infect cells in the lower respiratory tract of humans, but it 
can also infect immune and kidney cells [10, 29]. An overactive inflammatory response, 
induction of apoptosis, and cytokine dysregulation are vital factors that contribute to the high 
pathogenicity of MERS-CoV. Future treatments for MERS-CoV can inhibit virus entry, 
fusion, polyprotein cleavage, and replication by targeting both viral and host factors. Human 
pathogenic viruses are continually emerging from zoonotic sources due to the frequent mixing 
of different animal species in densely populated areas. Within the last fifteen to twenty years, 
numerous zoonotic enveloped viruses such as Ebola, SARS-CoV, and MERS-CoV have 
caused major outbreaks in human populations. Thus, to avoid future outbreaks, it is essential 
to develop a universal genomics diagnostic test which can distinguish between all the different 
types of viruses (Fig. 4). This will allow physicians to make the correct diagnosis, implement 
effective safety protocols, and provide patients with the appropriate treatment. It is critical to 
look at the side effects associated with the different DAAs and IAAs that have been proposed 
for MERS-CoV treatment. The use of soluble DPP4 to treat MERS-CoV infected patients 
needs to be investigated in future studies. Elucidating the host biochemical pathways hijacked 
by MERS-CoV can provide the missing link between co-morbidities and higher mortality 
rates in infected patients. The effect of DPP4 polymorphisms on MERS-CoV transmission 
and pathogenesis needs to be explored. Finally, it is important to investigate emerging, 
potentially pathogenic betacoronaviruses from bats to help predict the next CoV outbreak. 
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